

54 Volume 5 ● 2010

Traceable Recursion with Graphical Illustration

for Novice Programmers

Leonardo Sa
Student, Department of Computer Science, Information Systems, and Mathematics

Park University

Wen-Jung Hsin, PhD
Professor, Department of Computer Science, Information Systems, and Mathematics

Park University

Recursion is a concept that can be used to describe the phenomena and natural
occurrences in many different fields. As many applications utilize computer software
to model recursion, recursion is a particularly important concept in the computing
discipline. However, it is a difficult concept for many undergraduate students to

master. A Recursion Graph (RGraph) is one visualization method for representing
recursion. This paper extends our previous work on RGraphs to include a tool for

automatically generating complete and partial RGraphs from an arbitrary recursive
program. Use of this tool allows for more flexibility in demonstrations and more

focused pedagogical interactions on the part of students, thereby improving student
learning in recursion.

 In mathematics, recursion is a method of defining a mathematical function
based on previously defined terms of the same function. It is an important concept
in Computer Science as well as many other disciplines. McCracken (1987) stated
that "Recursion is fundamental in Computer Science, whether understood as a
mathematical concept, a programming technique, a way of expressing an algorithm,
or a problem-solving approach." In computing, it appears frequently in the study of
algorithms, data structures, and artificial intelligence. In other fields of study,
recursion appears as population and predator/prey models in biology, formal
structures in linguistics, filters in signal processing, and genomic sequencing in
bioinformatics. Fractals are self-similar, recursive patterns found in nature and
simulated through mathematics with applications in art, design, and engineering.

Although recursion is an important concept, teaching recursion to
introductory Computer Science students is a challenging task (AP Central.) This has
been documented in several studies. For example, AP Central states that "It is not
uncommon for novice programmers to have difficulty understanding recursion," and
Dann, Cooper, and Pausch (2000) argued, and Gal-Ezer and Harel (1998) agreed,
that "Some Computer Science educators have described the process of teaching
recursion as one of the universally most difficult concepts to teach." Teaching
recursion is a challenge largely because students have a difficult time envisioning
the abstract concept. A variety of approaches and studies has been tried to better
explain this concept. For example, Wu, Dale, and Bethel (1998) used experiment
results to show that the concrete conceptual models are better than abstract
conceptual models. Hundhausen, Douglas, and Stasko (2002) show that student use
of algorithm visualization technology has a great impact on teaching effectiveness.
The experiment result in Bruce, Danyluk, and Murtagh (2005) shows that
presenting recursive structure to students earlier rather than later can help
reinforce the concept of recursion and better prepare students for other data
structures. As many varieties of applications in other fields such as signal
processing, human genomic sequencing, and population modeling have utilized
computer software to capture the idea of recursion, it is important that Computer

InSight: A Journal of Scholarly Teaching 55

Our investigations can help
Computer Science educators
better understand how
students learn a critical and
difficult concept in the
discipline by using
algorithm visualization
technology.

Science students understand the concept of recursion early on so that they are
prepared to write programs to capture the recursive phenomena and natural
occurrences in many different applications.
 With the suggestion of the work from Hundhausen et. al. (2002) and Wu
et. al. (1998) where concrete conceptual modeling and visualization technology
enhance teaching effectiveness, this paper discusses the Recursion Graph (RGraph)
to try to help novice programmers to learn the concept of recursion. RGraph was
developed in 1996 and initially documented in Hsin (2008). In 2009, we
implemented a software tool to automatically generate complete and partial
RGraphs. A complete RGraph provides a concrete conceptual modeling tool that can
help crystallize for students the concept of recursion. A partial RGraph can help
student learning by having students think about what labels are missing, thereby
assessing their understanding of the concept. We report on the experimental result
of student learning in using RGraphs.

One particular feature of an RGraph is that it is traceable. Specifically, it
shows the detailed invocation sequences from one layer to another such that the
flow of the calls is traceable. Since an RGraph is traceable, it can be used as a self
debugging tool. It is particularly useful when the department of Computer Science
at the university where the authors teach adopted PDProlog (Public-Domain Prolog)
fourteen years ago. At that time, PDProlog was the only free Prolog interpreter for
use in the personal computer. PDProlog, however, did not provide a trace command
for the purpose of debugging. The authors therefore invented RGraph, providing the
needed debugging tool. When a student wishes to see how his recursion algorithm
works, he is required to hand draw an RGraph, starting from the simplest case
(such as N = 1 or 2). This helps the student catch his own mistakes if the algorithm
has problems.

In the literature, many books (Cormen,
Leiserson, Riverst, and Stein, C., 2009;
Horstmann, 2002) and lecture notes posted on
the Internet (National Institute of Standards and
Technology, 2005; Recursion Tree, 2007;
Recursion Tree,1997; Turbak, 2001) use
recursion trees showing how recursion
progresses to degenerated cases. The recursion
trees in these references indicate the abstract
algorithmic recurrence relationship. Our RGraph shows the detailed invocation
sequences from one layer to another, such that the flow of the calls is traceable.
The precise difference between a recursion tree and an RGraph will be discussed in
the section entitled “Comparison between an RGraph and a Recursion Tree.”
Additionally, various algorithm animations (Davidson, n.d.; Jeliot, n.d.; JHAVEPOP,
n.d.; McHugh, n.d.; Haug, n.d.; Stern and Naish, 2002) are also available on the
Internet. Our RGraph software tool differs from these animations in that the flow of
calling sequence is depicted in RGraphs, such that one can trace the process of
recursion explicitly.

This paper performs pedagogical investigations into a technique to improve
student learning in Computer Science education. The focus on student learning is
one of the key elements explored by Scholarship of Teaching and Learning (SoTL)
(Bruff, n,d.; Hutchings & Shulman, 1999). Hutchings and Shulman (1999) state that
“SoTL is not only done publicly to invite critical review and exchange of ideas but
also with an emphasis on inquiry into student learning.” Our investigations can help
Computer Science educators better understand how students learn a critical and
difficult concept in the discipline by using algorithm visualization technology.
 The rest of the paper is organized as follows. The “Teaching the RGraph”
section defines an RGraph, and describes the functionalities of RGraph software

56 Volume 5 ● 2010

tool. The “RGraph Examples” section provides several examples of constructing
RGraphs. The “Comparison between an RGraph and a Recursion Tree” section
compares an RGraph with a recursion tree. The “Experimental Result in Student
Learning” section reports the experimental result of student learning in using
RGraphs.

Teaching the RGraph

 In the sections that follow, we define RGraphs and describe how students
are introduced to RGraphs. To help readers understand how RGraphs help students
learn the concept of recursion, three examples are introduced in the main paper.
The first two examples, forward () and backward () functions, are two of the most
revealing examples in demonstrating the concept of recursion in the authors’
teaching experience. In particular, using these two examples, beginning students
can trace the flow of recursion, grasp the elements involved in recursion (i.e.,
terminating condition, nth term depending on (n-1)th term), and understand the
importance of the placement of a recursion call in the program. The third example
illustrates how RGraph shows the process of recursion more clearly as compared to
the common recursion tree approach in the current literature. The experimental
result following these sections shows how student learning is improved in
understanding the concept of recursion.

Definition

An RGraph is a directed graph, showing the invocation sequence of function
calls. It is built layer by layer from top to bottom (i.e., breadth-first instead of
depth-first), with directed edges indicating the processing sequence. To trace a
recursion algorithm in an RGraph, depth-first search is used. Except for the directed
cycles formed by the edges, an RGraph looks a lot like a tree.
 Formally, an RGraph is a directed graph consisting of a set of vertices, V,
and a set of directed edges, E. There are two types of vertices in set V: oval and
square. An oval vertex indicates a recursion call, whereas a square vertex shows a
pre-processing statement prior to a recursion call or a post-processing statement
after a recursion call.
 A vertex can have multiple outgoing edges, pointing to different directions:
(1) down to a vertex in the next lower layer, (2) right to a vertex in the same layer,
or (3) up to a vertex in the next higher layer. The order of the execution sequence
is (1), (2), and (3) for any existent outgoing edges. In essence, depth-first search is
observed. More precisely, if a vertex has a downward pointing edge, the vertex
pointed by the edge will be executed first. The upward pointed vertex will be called
last after the current vertex has been executed.

RGraph Software

 The RGraph software tool was designed and implemented at the university
where the authors teach in early 2009. Its user interface is shown in Figure 1, in
which a user can specify a computer program and the methods within the program
to be traced. After the user clicks on the "Generate Graphs!" button, a graphical
output is generated showing the sequence of method calls. For graphical
accessibility, a user can zoom in and out of a graphical output display.

InSight: A Journal of Scholarly Teaching 57

RGraph Examples

 In this section, examples are shown using a prototype language similar
to the syntax in Java programming language. Note that an exact programming
language is not used in this paper, simply because many programming language
such as C, C++, Java, Prolog, and Lisp can be used to implement the algorithms.

Example: Recursive Print

Printing a list of elements in a forward order or a backward (i.e., reverse)
order can be done using a recursive algorithm. The following show both forward and
backward printing algorithms

forward(LIST) {
 if (LIST == empty)
 return;
 else {
 print(head(LIST));
 forward(tail(LIST));
 }
}
backward(LIST) {
 if (LIST == empty)
 return;
 else {
 backward(tail(LIST));
 print(head(LIST));
 }
}

where function head(LIST) extracts the first element in the LIST, and function
tail(LIST) returns a list consisting of the rest of the elements excluding the head
element. For example, head(ABCDE) returns element A, and tail(ABCDE) returns
the list BCDE. Notice that the difference between forward() and backward() is
simply the position of print() function relative to the recursive invocation.
 Figure 2 shows an RGraph for printing list ABCDE by invoking
forward("ABCDE"). Figure 3 shows an RGraph for backward("ABCDE"). Notice that a
vertex such as forward("BCDE") in Figure 2 has multiple outgoing edges. In this
case, the edge going downward to the lower layer should be executed first,
effectively, performing the lower layer subroutine call first. By following the
sequence of print() statements in both Figures 2 and 3, one can obtain the printed
orders for list ABCDE.

Example: Partial RGraph

The field "Percentage of missing labels" in Figure 1 indicates whether an
RGraph is complete (i.e., 0% missing label), or partial. Figure 4 shows an example
of an RGraph where 30% of labels are missing from the complete RGraph in Figure
2. A partial RGraph can assist student learning by having students think about what
labels are missing, and can be used to assess students' understanding of recursion
concept.

58 Volume 5 ● 2010

Figure 1. RGraph Software Tool –
User Interface Panel

Figure 2. An RGraph for Forward
Printing of list "ABCDE"

Figure 3. An RGraph for Backward
Printing of list "ABCDE"

Figure 4. An RGraph for Forward
Printing of list "ABCDE" with 30% of
labels missing

InSight: A Journal of Scholarly Teaching 59

Comparison between an RGraph and a Recursion Tree

This section compares an RGraph and a recursion tree. As stated in the
Introduction, the major difference between an RGraph and a recursion tree is that a
recursion tree exhibits an abstract concept; whereas an RGraph shows a detailed
invocation sequence.

To illustrate the difference, we use the recursion tree in Figure 5 of chapter
17 in (Horstmann, 2002) as a comparison example. In this example, the growth of
rabbit population is being calculated. The following describes the problem
specification.

In a simplified rabbit-growth world, a rabbit, in its first two months of life,
does not bear babies. Every month after the first two months, each male and
female pair gives birth to exactly one pair of male and female babies. The problem
is to find the number of rabbit pairs after n months starting with just one pair of

rabbits. Define)(nrabbit as the number of rabbit pairs in n months. The

recurrence relation of the problem can be formulated as

2)2()1(
21
11

)(
nifnrabbitnrabbit
nif
nif

nrabbit

 A recursion tree for the recurrence relation in the above equation is
illustrated in Figure 5 for the case .55n An RGraph for the same recurrence relation
is shown in Figure 6.

Figure 5. A Recursion Tree for counting rabbit growth

Figure 6. An RGraph for counting the rabbit growth

60 Volume 5 ● 2010

 Comparing Figures 5 and 6, an RGraph explicitly shows the calling and
returning sequence by following the direction of the edges; whereas Figure 5 only
shows how the recursion progresses to degenerated cases.

Experimental Result in Student Learning

The RGraph software was implemented in 2009. In the past, before RGraph
software was available, students would hand draw RGraphs for recursion problems.
In the interest of understanding how the RGraph software tool impacts student
learning, in 2009 fall semester, we conducted RGraph pre- and post- surveys in 3
undergraduate Computer Science courses, ranging from Discrete Mathematics to
Programming Languages, with a total of 34 students. Each survey is given 5
questions as listed in Table 1 with a value of 5 (Strongly Agree), 4 (Agree), 3
(Neutral), 2 (Disagree), 1 (Strongly Disagree), and 0 (not applicable). Table 1
shows the average result of the pre- and post-surveys. Prior to using RGraph
software, since students do not know what RGraph is, the pre-survey shows that
the students are neutral about RGraph. After introducing RGraph software, it can be
seen from the survey result that in general, students strongly agree in all questions
regarding the use of RGraph software tool.

Table 1. RGraph Pre-Survey and Post-Survey Result
Survey Question Pre-Survey

Average
Post-Survey
Average

(A) RGraph can help me trace the flow of recursion 3.65 4.59
(B) RGraph is a visual aid to illustrate the process of
recursion

3.85 4.88

(C) Compared to Horstmann’s Recursion Tree,
RGraph can show the process of recursion more
clearly

3.15 4.62

(D) RGraph helps me understand the concept of the
recursion

3.44 4.56

(E) Using RGraph, I am more comfortable with the
concept of recursion

3.41 4.53

Summary and Conclusion

The concept of recursion is important to many fields of study, especially
when many applications rely on computer software for data analysis and prediction.
Through years of conveying the concept of recursion to students in Computer
Science, the authors have found that learning recursion is nothing more than the
old saying: practice makes perfect. However, just as in most learning environments,
an adequate learning tool is the key to success. Our invention of RGraph makes the
concept of recursion illustratable and traceable, thereby allowing flexibility in
demonstrations and focused pedagogical interactions on the part of students.

The model provided in this paper is reflective of one of the goals of the
scholarship of teaching and learning (SoTL), in which “the faculty frame and
systemically investigate questions related to student learning—the conditions under
which it occurs, what it looks like, how to deepen it” (Hutchings & Shulman, 1999).
In this paper, we investigate how a visualization technique helps student learning in
Computer Science. Our example of pedagogical research can be generalized to other
fields of study. Our experimental result shows that an RGraph is a valuable learning
and teaching tool.

InSight: A Journal of Scholarly Teaching 61

References

AP Central - Teaching Recursion
(n.d.)
http://apcentral.collegeboard.com/ap
c/members/courses/teacherscorner/4
5406.htm

Bruce, K., Danyluk, A., & Murtagh, T.
(2005). Why structural recursion
should be taught before arrays in
CS1. ACM SIGCSE.

Bruff, D. (n.d.) The Scholarship of
Teaching and Learning (SoTL.)
Vanderbilt Center for Teaching.
http://www.vanderbilt.edu/cft/resour
ces/teaching_resources/reflecting/sot
l.htm#what3

Cormen, T., Leiserson, C. Riverst, R,
& Stein, C. (2009). Introduction to
Algorithms. Boston: The MIT Press.

Dann, W., Cooper, S., & Pausch, R.
(2000). Using visualization to teach
novices recursion. Proceedings of the
6th Annual Conference on Innovation
and Technology in Computer Science
Education, Canterbury, England, pp.
109-112.

Davidson, A. (n.d.) Eight Queens
Java Applet.
http://cpaz.ca/aaron/SCS/queens/

Gal-Ezer, J. & Harel, D. (1998). What
(else) should CS educators know?
Communications of the ACM 41, 9,
pp. 77-84.

Haug, F. (n.d.) Relevant algorithm
animations/visualizations (in Java).
Chapter 5. Recursion.
http://www.ansatt.hig.no/frodeh/alg
met/animate.html

Horstmann, C. (2002). Big Java. John
Wiley & Sons, Inc.

Hsin, W.-J. (2008). Teaching
recursion using recursion graphs. In
the conference proceeding of
Consortium of Computing Sciences in
Colleges. April.

Hundhausen, C. Douglas, S., &
Stasko, J. (2002). A meta-study of
algorithm visualization effectiveness.
Journal of Visual Languages and
Computing, 13(3), 259-290. June.

Hutchings, P. & Shulman, L.S.
(1999). The scholarship of teaching:
New elaborations, new
developments. Originally published in
the September/October 1999 issue of
Change.
http://www.carnegiefoundation.org/e
library/docs/sotl1999.htm

JHAVEPOP. (n.d.) Linked list
manipulations using JHAVEPOP.
http://jhave.org/jhavepop/java/exerc
ises.html

McCracken, D. (1987). Ruminations
on computer science curricula.
Communications of the ACM, 20(1)
3-5.

McHugh, J. (n.d.) The animation of
recursion.
http://www.animatedrecursion.com/i
ntro/introduction.html.

Moreno, A., Myller, N., Sutinen, E., &
Ben-Ari, M. (2004). Visualizing
programs with Jeliot 3. Proceedings
of the International Working
Conference on Advanced Visual
Interfaces AVI 2004, Gallipoli
(Lecce), Italy.

National Institute of Standards and
Technology. (2005). Recursion tree.
http://www.itl.nist.gov/div897/sqg/d
ads/HTML/recursionTree.html.

Recursion Tree. (1997).
http://www.cs.duke.edu/courses/fall
97/cps130/lectures/lect04/node24.ht
ml.

Recursion Tree. (2007).
http://homepages.ius.edu/rwisman/C
455/html/notes/Chapter4/RecursionT
ree.html.

62 Volume 5 ● 2010

Stern, L. & Naish, L. (2002).
Animating Recursive Algorithms.
http://imej.wfu.edu/articles/2002/2/
02/index.asp

Turbak, L. (2001). Recurrence in
CS231: Algorithms.
http://cs.wellesley.edu/~cs231/fall01
/recurrences.pdf.

Wu, C., Dale, N., & Bethel, L. (1998).
Conceptual Models and Cognitive
Learning Styles in Teaching
Recursion. ACM SIGCSE.

Leonardo Sa is currently a senior in the Department of Computer Science,
Information Systems, and Mathematics at Park University. His interest is in the area
of computer programming and networking. He has many years of working
experience as a program analyst prior to coming to Park University.

Wen-Jung Hsin received her interdisciplinary PhD in Telecommunications and
Computer Science at the University of Missouri - Kansas City. She is currently a
professor in the Department of Computer Science, Information Systems, and
Mathematics at Park University. Her teaching and research interests are in the areas
of Computer Science education, computer networking, and network security.

